Introducing robotics and block programming in elementary education

Autores

  • José Manuel Sáez López Universidad Nacional de Educación a Distancia, UNED (Spain) http://orcid.org/0000-0001-5938-1547
  • Rogelio Buceta Otero Universidad Nacional de Educación a Distancia, UNED (Spain)
  • Sebastián De Lara García-Cervigón Universidad Nacional de Educación a Distancia, UNED (Spain)

DOI:

https://doi.org/10.5944/ried.24.1.27649

Palavras-chave:

computational thinking, elementary school, programming languages, teaching skills, technology applications

Resumo

This study shows the relevance of introducing visual block programming and robotics in primary education. The study describes how robotics are effectively implemented in schools, based on computational concepts and the classroom activities. We describe, apply and present specific resources teachers, who may think of introducing programming and robotics in education must consider. These resources can be adapted to their students’ levels and education stages. It is essential to be aware of the resources available and adapt them to students’ needs. The analysis involves 107 fifth-grade students in primary education at three schools. The sample of the study was non-probabilistic and intentional. The study is bidimensional. The first dimension is a quasi-experimental design obtaining data from a test. Construct validity was tested by an exploratory factor analysis. The second dimension details the results for four scales previously described: active learning, computational concepts, perceived usefulness and enjoyment. This dimension examines the results of the aforementioned scale, which analyses the pedagogical interactions. Statistically significant improvements were achieved in the understanding of basic computational concepts such as sequences, loops, conditional statements, parallel execution, event handling and use of robotics. Improvements were also noted in didactic interaction, and in greater enjoyment, enthusiasm, efficiency and active participation of students. They also showed stronger motivation, commitment and interest in the process.

FULL ARTICLE:
https://revistas.uned.es/index.php/ried/article/view/27649/22033

Downloads

Não há dados estatísticos.

Biografias Autor

José Manuel Sáez López, Universidad Nacional de Educación a Distancia, UNED (Spain)

El Dr. José Manuel Sáez López es profesor contratado doctor en la Universidad Nacional de Educación a Distancia (UNED) España. Su trabajo científico y académico ha sido publicado en 47 revistas revisadas por pares (6 JCR y 11 Scopus). Sus líneas de investigación son la integración de la tecnología educativa, estrategias metodológicas, ludificación y programación en el aula. Está acreditado como "Profesor contratado Doctor" por la la Agencia Nacional de Calidad y Acreditación de España. Ha sido reconocido como Microsoft Expert Educator 2014 y Microsoft Innovative Expert 2015.

Rogelio Buceta Otero, Universidad Nacional de Educación a Distancia, UNED (Spain)

Doctorando en la Universidad Nacional de Educación a Distancia, UNED (España). Profesor de Enseñanza Secuandaria en la Comunidad Autónoma de Andalucía. Trabajando la robótica educativa y el uso del M-bot en las matemáticas, en la etapa de Educación Secundaria, los ejes de coordenadas cartesianas y las aplicaciones educativas de M Block.

Sebastián De Lara García-Cervigón, Universidad Nacional de Educación a Distancia, UNED (Spain)

Doctorando en la Universidad Nacional de Educación a Distancia, UNED (España). Trabajando la fundamentación y análisis de las aplicaciones educativas de la robótica en la enseñanza elemental. Maestro de Educación Primaria en la Comunidad Autónoma de Castilla-La Mancha.

Referências

Baytak, A., & Land, S. M. (2011). An investigation of the artifacts and process of constructing computer games about environmental science in a fifth-grade classroom. Educational Technology Research and Development, 59, 765-782. https://doi.org/10.1007/s11423-010-9184-z

Benitti, F. B. V. (2012). Exploring the educational potential of robotics in schools: A systematic review. Computers & Education, 58, 978-988. https://doi.org/10.1016/j.compedu.2011.10.006

Bers, M. U., González-González, C., & Armas-Torres, M. B. (2019). Coding as a playground: Promoting positive learning experiences in childhood classrooms. Computers & Education, 138, 130-145. https://doi.org/10.1016/j.compedu.2019.04.013

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking. Proceedings of the 2012 Annual Meeting of the American Educational Research Association. Vancouver, BC, Canada.

Chen, G., Shen, J., Barth-Cohen, L., Jiang, S., Huang, X., & Eltoukhy, M. (2017). Assessing elementary students’ computational thinking in everyday reasoning and robotics programming. Computers & Education, 109, 162-175. https://doi.org/10.1016/j.compedu.2017.03.001

Computer Science Teachers Association (2003). http://csta.acm.org

Cózar, R., y De Moya, M. del V. (Eds.). (2017). Entornos humanos digitalizados: experiencias TIC en escenarios educativos. Madrid: Síntesis.

Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (2002). User acceptance of computer technology: a comparison of two theoretical models. Management Science, 35(8), 982-1003. https://doi.org/10.1287/mnsc.35.8.982

González-González, C. S. (2019). State of the art in the teaching of computational thinking and programming in childhood education. Education in the Knowledge Society, 20, 1-15. https://doi.org/10.14201/eks2019_20_a17

Grover, S., & Pea, R. (2013). Computational thinking in K-12, a review of the state of the field. Educational Researcher, 42(1), 38-43. https://doi.org/10.3102/0013189X12463051

Hair, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C. (1998). Multivariate data analysis. (5th ed). Upper Saddle River. Prentice Hall.

Hiltz, S. R., Coppola, N., Rotter, N., & Turoff, M. (2000). Measuring the importance of collaborative learning for the effectiveness of ALN: a multi-measure, multi-method approach. Journal of Asynchronous Learning Networks, 4(2), 103-125. https://doi.org/10.24059/olj.v4i2.1904

INTEF (2017). El Pensamiento Computacional en la Enseñanza Obligatoria (Computhink). https://intef.es/wp-content/uploads/2017/02/2017_0206_CompuThink_JRC_UE-INTEF.pdf

International Society for Technology in Education and the Computer Science Teachers Association. (2011). Operational definition of computational thinking for K-12. http://csta.acm.org/Curriculum/sub/CurrFiles/CompThinkingFlyer.pdf

Kwon, D. Y., Kim, H. S., Shim, J. K., & Lee, W. G. (2012). Algorithmic bricks: a tangible robot programming tool for elementary school students. Education, IEEE Transactions, 55(4), 474-479. https://doi.org/10.1109/TE.2012.2190071

Lambert, L., & Guiffre, H. (2009). Computer science outreach in an elementary school. Journal of Computing Sciences in Colleges, 24(3), 118-124.

Laros, F. J. M., & Steenkamp, J.-B. E. M. (2005). Emotions in consumer behavior: a hierarchical approach. Journal of Business Research, 58(10), 1437-1445. https://doi.org/10.1016/j.jbusres.2003.09.013

Lin, J. M. C., Yen, L. Y., Yang, M. C., & Chen, C. F. (2005). Teaching computer programming in elementary schools: a pilot study. In National educational computing conference.

Lindh, J., & Holgersson, T. (2007). Does Lego training stimulate pupils' ability to solve logical problems? Computers & Education, 49(4), 1097-1111. https://doi.org/10.1016/j.compedu.2005.12.008

Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmong, E. (2010). The Scratch programming language and environment. ACM Transactions on Computing Education, 10(4), 1-15. https://doi.org/10.1145/1868358.1868363

Maya, I., Pearson, J. N., Tapia, T., Wherfel, Q. M., & Reese, G. (2015). Supporting all learners in school-wide computational thinking: a cross-case qualitative analysis. Computers & Education, 82, 263-279. https://doi.org/10.1016/j.compedu.2014.11.022

Mazzoni, E., & Benvenuti, M. (2015). A Robot-Partner for Preschool Children Learning English Using Socio-Cognitive Conflict. Educational Technology & Society, 18(4), 474-485.

Mitnik, R., Recabarren, M., Nussbaum, M., & Soto, A. (2009). Collaborative Robotic Instruction: A Graph Teaching Experience. Computers & Education, 53(2), 330-342. https://doi.org/10.1016/j.compedu.2009.02.010

Moreno, J., Robles, G., Román, M., & Rodríguez, J. D. (2019). Not the same: a text network analysis on computational thinking definitions to study its relationship with computer programming. Revista Interuniversitaria de Investigación en Tecnología Educativa, 7. https://doi.org/10.6018/riite.397151

Papert, S. (1980). Mindstorms: children, computers, and powerful ideas. Basic Books.

Relkin, E., de Ruiter., L., & Bers, M. U. (2020). TechCheck: Development and Validation of an Unplugged Assessment of Computational Thinking in Early Childhood Education. Journal of Science Education and Technology, 29, 482-498. https://doi.org/10.1007/s10956-020-09831-x

Rogers, C., & Portsmore, M. (2004). Bringing Engineering to Elementary School. Journal of STEM Education, 5, 17-28.

Sáez-López, J. M., Román-González, M., & Vázquez-Cano, E. (2016). Visual programming languages integrated across the curriculum in elementary school. A two year case study using scratch in five schools. Computers & Education, 97, 129-141. https://doi.org/10.1016/j.compedu.2016.03.003

Sáez-López, J. M., & Sevillano-García, M. L. (2017). Sensors, programming and devices in art education sessions. One case in the context of primary education. Culture and Education, 29(2), 350-384. https://doi.org/10.1080/11356405.2017.1305075

Sáez-López, J. M. (2019). Programación y Robótica en Educación Infantil, Primaria y Secundaria. Editorial UNED.

Sáez-López, J. M., Sevillano-García, M. L., & Pascual-Sevillano, M. A. (2019). Aplicación del juego ubicuo con realidad aumentada en Educación Primaria. Comunicar, 61 (XXVII), 71-82. https://doi.org/10.3916/C61-2019-06

Sáez-López, J. M., Sevillano-García, M. L., & Vázquez-Cano, E. (2019). The effect of programming on primary school students’ mathematical and scientific understanding: educational use of mBot. Educational Technology Research and Development, 67(6), 1405-1425. https://doi.org/10.1007/s11423-019-09648-5

Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., & Clark, D. (2013). Integrating computational thinking with K-12 science education using agent-based computation: a theoretical framework. Education and Information Technologies, 18, 351-380. https://doi.org/10.1007/s10639-012-9240-x

Spolaôr, N., & Vavassori-Benitti, F.B. (2017). Robotics applications grounded in learning theories on tertiary education: A systematic review. Computers & Education, 112, 97-107. https://doi.org/10.1016/j.compedu.2017.05.001

Wilson, A., & Moffat, D. C. (2010). Evaluating Scratch to introduce younger school children to programming. In Proceedings of the 22nd Annual Psychology of Programming Interest Group Universidad Carlos III de Madrid, Leganes, Spain.

Wing, J. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35. https://doi.org/10.1145/1118178.1118215

Publicado

2021-01-02

Como Citar

Sáez López, J. M., Buceta Otero, R., & De Lara García-Cervigón, S. (2021). Introducing robotics and block programming in elementary education. RIED. Revista Iberoamericana De Educación a Distancia, 24(1), 95–113. https://doi.org/10.5944/ried.24.1.27649