Assessment of a serious game that may contribute to improving logical-mathematical reasoning in high school students

Authors

  • Alicia Yesenia López Sánchez Universidad Autónoma de Nuevo León, UANL (México)
  • Aída Lucina González Lara Universidad Autónoma de Nuevo León, UANL (México)

DOI:

https://doi.org/10.5944/ried.24.1.27450

Keywords:

learning, information technology, artificial intelligence

Abstract

Nowadays, having skills to solve problems using logical-mathematical reasoning is very important for the development of science and technology. According to the results of tests like the Program for International Student Assessment (PISA) and the National Plan for Learning Assessment (PLANEA), students in Mexico have a poor command in this type of reasoning, since they know the concepts but they do not know how to apply them. To help in solving this problem, this research presents the assessment of a serious game (which contains multiple-choice problems) to strengthen the logical-mathematical reasoning with the implementation of a system based on fuzzy logic. To achieve the above, two exams which were similar in ability level and time limit were designed and maximum time to answer. Afterward, the first test was applied and then the 33 high-school students were provided with the game, which they used for two weeks and finally the second test was applied. The results from the tests were analyzed based on the duration and the levels reached during the use of the game, it was discovered that most of the students can do linear procedures, but they find it difficult to do multiple procedures. Also, it was identified that those students that used the game or moved to the next level improved their performance, unlike those who did not use it.

FULL ARTICLE:
https://revistas.uned.es/index.php/ried/article/view/27450/22045

Downloads

Download data is not yet available.

Author Biographies

Alicia Yesenia López Sánchez, Universidad Autónoma de Nuevo León, UANL (México)

Profesora a nivel licenciatura en el área de programación e interacción hombre-máquina de la Facultad de Ingeniería Mecánica y Eléctrica de la Universidad Autónoma de Nuevo León, Doctora en Ingeniería con orientación en Tecnologías de la Información. 

Aída Lucina González Lara, Universidad Autónoma de Nuevo León, UANL (México)

Profesora investigadora desde hace 30 años en la Facultad de Ingeniería Mecánica y Eléctrica de la Universidad Autónoma de Nuevo León, tiene el grado de Doctora en Ingeniería con orientación en Tecnologías de la Información. Es miembro del SNI en el nivel candidato, cuenta con perfil PRODEP.  En 2019 recibió el “Reconocimiento al Mérito Académico ANFEI” y la Medalla “Alicia Torres Villanueva”. Actualmente es Coordinadora Académica de la Maestría en Ingeniería con orientación en Tecnologías de la Información.

References

Aishah, N., y Syed, S. S. (2014). Sensitivity analysis of Welch’s t-test. 21st National Symposium on Mathematical Sciences (SKSM), (1), 888-893. https://doi.org/10.1063/1.4887707

Alvarez, J., y Djaouti, D. (2011). An introduction to Serious Game-Definitions and concepts. Serious Games & Simulation for Risks Management, 11(1), 11-15.

Armstrong, T. (2006). Inteligencias múltiples en el aula: Guía práctica para educadores. Ediciones Paidós Ibérica, S.A.

Bragdon, A., y Fellows, L. (2003). Juegos de mente. Random House Espanha.

Brezovszky, B., McMullen, J., Veermans, K., Hannula, M., Rodríguez, G., Pongsakdi, N., y Laakkonen, E. (2019). Effects of a mathematics game-based learning environment on primary school students' adaptive number knowledge. Computers & Education, 128(1), 63-74. https://doi.org/10.1016/j.compedu.2018.09.011

CENEVAL (2018). Guía EXANI II. CENEVAL. http://www.ceneval.edu.mx/documents/20182/98406/Guia+EXANI-II+23a+ed.pdf/e1ff950b-2b89-4544-af4b-d5f456fa3ee8

Delacre, M., Lakens, D., y Leys, C. (2017). Why Psychologists Should by Default Use Welch’s t-test. International Review of Social Psychology, 30(1), 92-101. http://doi.org/10.5334/irsp.82

EvolMind (2020). La plataforma Elearning que simplifica la formación online. evolCampus. https://www.evolcampus.com/latam

Fernández, A. (2014). La evaluación de los aprendizajes en la universidad: nuevos enfoques. Publicaciones Universidad Politécnica de Valencia.

García, R. I., Cuevas, O., Vales, J. J., y Cruz, I. R. (2012). Impacto del Programa de Tutoría en el desempeño académico de los alumnos del Instituto Tecnológico de Sonora. Revista Electrónica de Investigación Educativa, 14(1), 106-121.

Gardner, H., y Hatch, T. (1989). Multiple Intelligences Go to School: Educational Implications of the Theory of Multiple Intelligences. Educational Researcher, 18(8), 4-10. http://doi.org/10.2307/1176460

Holvikivi, J. (2007). Logical Reasoning Ability in Engineering Students: A Case Study. IEEE Transactions on Education, 50(4), 367-372. https://doi.org/10.1109/TE.2007.906600

Hurtado, P., García, M., Rivera, D., y Forgiony, J. (2018). Las estrategias de aprendizaje y la creatividad: una relación que favorece el procesamiento de la información. Espacios, 39(17), 1-18.

Huxham, M., Campbell, F., y Westwood, J. (2010). Oral versus written assessments: a test of student performance and attitudes. Assessment & Evaluation in Higher Education, (1), 1-12. https://doi.org/10.1080/02602938.2010.515012

Ibarra, M. J., Soto, W., Ataucusi, P., y Ataucusi, E. (2016). MathFraction: Educational Serious Game for Students Motivation for math learning. XI Latin American Conference on Learning Objects and Technology (LACLO), (1), (pp. 1-9). https://doi.org/10.1109/LACLO.2016.7751777

INEE. (2019a). Planea. INEE. https://www.inee.edu.mx/wp-content/uploads/2019/07/Resultados2017.pdf

INEE. (2019b). SIRE- Sistema Integral de Resultados de las Evaluaciones. INEE. https://www.inee.edu.mx/bases-de-datos-inee-2019/

Jarero, M., Aparicio, E., y Sosa, L. (2013). Pruebas escritas como estrategia de evaluación de aprendizajes matemáticos. Un estudio de caso a nivel superior. Revista latinoamericana de investigación en matemática educativa, (1), 213-243. https://dx.doi.org/10.12802/relime.13.1623

Johnson, P., Khemlani, S. S., y Goodwin, G. P. (2015). Logic, probability, and human reasoning. Trends in Cognitive Sciences, 19(4), 201-214. https://doi.org/10.1016/j.tics.2015.02.006

Kramarski, B., y Mevarech, Z. R. (2003). Enhancing Mathematical Reasoning in the Classroom: The Effects of Cooperative Learning and Metacognitive Training. American Educational Research Journal, 40(1), 281-310. https://doi.org/10.3102/00028312040001281

Larrazolo, N., Backhoff, E., y Tirado, F. (2013). Habilidades de razonamiento matemático de estudiantes de educación media superior en México. Revista mexicana de investigación educativa, 18(59), 1137-1163.

Lasso, N., y Córdoba, J. C. (2015). Evaluación del desempeño de los estudiantes en evaluaciones orales y escritas. Docencia Universitaria, (1), 33-41.

Lithner, J. (2000). Mathematical Reasoning in School Tasks. Educational Studies in Mathematics, 41(2), 165-190. https://doi.org/10.1023/A:1003956417456

López, A. Y. (2020). Desarrollo de un juego serio para fortalecer el razonamiento lógico-matemático con implementación de un sistema basado en lógica difusa (tesis doctoral). Universidad Autónoma de Nuevo León.

López, R. (2017). Origen y evolución del Ceneval. Centro Nacional de Evaluación para la Educación Superior.

Mangowal, R. G., Yuhana, U., Yuniarno, E., y Purnomo, M. (2017). MathBharata: A serious game for motivating disabled students to study mathematics. IEEE 5th International Conference on Serious Games and Applications for Health (SeGAH), (1), 1-6. https://doi.org/10.1109/SeGAH.2017.7939277

Michael, D., y Chen, S. (2006). Serious Games: games that educate, train and inform. Thomson.

Moodle (2020). Empezar es fácil. moodle. https://moodle.org/

OECD. (2018). Programa para la evaluación internacional de alumnos (PISA). OCDE. http://www.oecd.org/pisa/publications/PISA2018_CN_MEX_Spanish.pdf

Quintero, L., Suárez, Y., García, G., y Vanegas, J. (2012). Niveles de pensamiento y resolución de problemas matemáticos en los estudiantes del programa psicología de una universidad pública de Santa Marta (Magdalena). Duazary. Revista Internacional de Ciencias de la Salud, 9(2), 123-131.

Reyes, S., Castillo, A., Zúñiga, A., y Llarena, R. (2012). Niveles de dominio en Habilidad matemática: La estrategia de evaluación de ENLACE Media Superior Marcos de referencia 5. CENEVAL.

Rodríguez, O., Mendivil, G., Arámburo, D., y Valenzuela, D. (2017). Importancia de la aplicación de retos matemáticos para el desarrollo del pensamiento matemático en estudiantes de secundaria. Investigación e Innovación en Matemática Educativa, 2(2), 216-224.

Santibáñez, T. (2016). Manual para la evaluación del aprendizaje estudiantil. Trillas.

Soares, M. A., Gonçalves, T. D., Monteiro, L. F., Machado, A., y Jusan, D. (2016). A Fuzzy Logic Application in Virtual Education. Procedia Computer Science, 91(1), 19-26. https://doi.org/10.1016/j.procs.2016.07.037

Soto, R. I. (2018). Principios que consideran los catedráticos al elaborar problemas matemáticos. UCV - SCIENTIA, 10(2), 132-137. https://doi.org/10.18050/RevUcv-Scientia.v10n2a2

Structuralia (2020). Impulsa tu carrera profesional. Soluciones integrales de formación y gestión structuralia, S. A. http://www.structuralia.com/es/

Triebel, D., Reichert, W., Bosert, S., Feulner, M., Okach, D., Slimani, A., y Rambold, G. (2018). A generic workflow for effective sampling of environmental vouchers with UUID assignment and image processing. Database, (1), 1-10. https://doi.org/10.1093/database/bax096

Published

2021-01-02

How to Cite

López Sánchez, A. Y., & González Lara, A. L. (2021). Assessment of a serious game that may contribute to improving logical-mathematical reasoning in high school students. RIED. Revista Iberoamericana De Educación a Distancia, 24(1), 221–243. https://doi.org/10.5944/ried.24.1.27450